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By adapting the general flame-acoustic interaction theory developed in Wu et al.
(J. Fluid Mech., vol. 497, 2003, pp. 23–53), a systematic analysis is carried out for
the interaction of a stable premixed flame in a duct with vortical disturbances
superimposed on the oncoming mixture. A small-amplitude vortical perturbation,
assumed to be a convecting gust with a frequency ω, induces a hydrodynamic field in
the vicinity of the flame, causing an initially planar flame to wrinkle. The unsteady
heat release resulting from the increased surface area of the wrinkling flame then
generates a sound wave with frequency 2ω. When 2ω coincides with the natural
frequency of an acoustic mode of the duct, a flame-acoustic resonance takes place,
through which the flame-induced sound may attain an amplitude sufficiently large to
modulate the flame through the unsteady Rayleigh–Taylor effect. A novel evolution
system is derived to describe this two-way coupling for two cases: (a) a flame with
a fixed mean position and (b) a moving flame. Numerical solutions show that for
(a), the mutual flame-acoustic interaction initiates a violent subharmonic parametric
instability, and the flame-acoustic system quickly evolves into a fully nonlinear regime,
which probably corresponds to a state of self-sustained oscillation. This finding
presents a peculiar instability scenario: a small-amplitude vortical perturbation may,
by initiating acoustic-flame resonance, completely destabilize an otherwise stable
planar flame. For a moving flame, the flame-acoustic resonance is of transient nature.
The acoustic pressure gains substantially, but the parametric flame instability is
induced only when the vortical disturbance exceeds a finite threshold.

1. Introduction
The influence of external disturbances on premixed flames has been extensively

studied. The interest is twofold. The first is associated with modelling the turbulent
flame velocity UT in terms of the ambient flow characteristics, such as the fluctuation
intensity u′. Clavin & Williams (1982) suggested that the initial departure from the
laminar flame speed UL may be understood by analysing the response of a flame
to small-amplitude vortical disturbances representing weak turbulence present in the
oncoming fresh mixture. Since the flame thickness is usually much smaller than
the characteristic length scale of flow fluctuations, the flame may be treated as an
‘interface’ separating the burned and unburned materials. Describing the response of
the ‘interface’, however, requires an analysis of its inner structure, which consists of
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a thin preheat zone and an even thinner reaction zone. Heat release from within the
flame induces a non-trivial hydrodynamical field via gas expansion, which means
that the propagation of the interface cannot be predicted without knowing its
hydrodynamic field. Not surprisingly therefore, only after the asymptotic theory
of the flame structure (Matalon & Matkowsky 1982; Pelce & Clavin 1982) had
been well established could complete linearized analyses be performed, by Searby
& Clavin (1986) and Aldredge & Williams (1991). These authors computed relevant
statistical properties of the wrinkled flame and the hydrodynamic field for oncoming
disturbances with a given spectrum. The increase of the flame speed over UL, due to
the increased surface area, scales as u′2 as expected. Since these calculations sought
the steady-state response, the flame was assumed to be in the parameter regime
in which the hydrodynamic, i.e. Darrieus–Landau (D-L), instability does not arise.
Response of weakly unstable flames to moderate level of perturbations has been
investigated by using equations of the Michelson–Sivashinsky (M-S) type (see e.g.
Cambray & Joulin 1994; D’Angelo, Joulin & Boury 2000; Zaytsev & Bychkov 2002).
Propagation of flame fronts through intense disturbances was studied by using the
so-called G-equation (e.g. Zhu & Ronney 1994; Aldredge 1996).

The second, and probably more important, motivation of investigating the
interaction of external disturbances with a flame is due to its relevance to the large-
scale instability of combustion, which generally refers to strong pressure fluctuations
of acoustic nature in a chamber (see e.g. Poinsot et al. 1987; Yu, Trouve & Daily
1991; Candel 2002). While this instability is essentially a self-excited oscillation,
involving a complex interplay among unsteady chemical heat release and transport,
hydrodynamics and acoustic modes of the chamber, it was believed that coupling of
any two of these multiple physical processes may be isolated and characterized by a
transfer function, by studying the response of a flame to suitable externally imposed
perturbations (Lieuwen 2003). The expectation is that the full closed-loop coupling
may eventually be described by compounding these transfer functions. The problem
is of particular relevance for suppressing combustion instability by means of active
control (e.g. Candel 2002; Dowling & Morgans 2005), where it is important to know
how a flame responds to actuation.

In connection with combustion instability, there have been a great number of
investigations of flame response to acoustic disturbances (see e.g. Ducruix et al. 2003
and references therein). The flame motion and the resulting heat release have been
measured, mostly for conical flames, in order to extract transfer functions relating
the response to the forcing (e.g. Ducruix, Durox & Candel 2000; Schuller et al.
2002). For weak perturbations, these flames are found to act as a low-pass filter.
In the same vein, Baillot, Durox & Prud’homme (1992) studied the flame response
to small-amplitude vortical disturbances. In examining the flow field upstream of
a conical flame subjected to acoustic excitation, Birbaud, Durox & Candel (2006)
detected a significant level of convective vortical fluctuations, suggesting that this
kind of disturbance is inevitably present, even if not artificially introduced, and
should therefore deserve further investigations.

Semi-empirical kinematic models based on the G-equation have been proposed
by Fleifil et al. (1996) to describe flame wrinkling caused by perturbations, from
which the unsteady heat release can then be estimated. Models of this type have
been further extended by Dowling (1999), Schuller, Durox & Candel (2003) and
Lieuwen (2005) and were found to give reasonably good predictions. However, with
the hydrodynamic and thermal-diffusive aspects of the flame being bypassed, this
approach includes only one effect of the perturbation on the flame: the kinematic
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advection of the flame by the acoustic velocity. In reality, acoustic pressure influences
the burning rate of the flame, and the acoustic pressure gradient, or acceleration,
affects the flame dynamics via the Rayleigh–Taylor (R-T) effect. In order to account
for these effects, it is necessary to look into the structure of the flame as well as
its associated hydrodynamic field (Matalon 2007). The activation-energy-asymptotic
(AEA) approach based on large Zeldovich number provides the mathematical
tool for pursuing this line of investigation on a first-principle basis (Clavin 1985,
1994).

Effects of acoustic pressures on the burning rate have been analysed by several
investigators using AEA. Harten, Kapila & Matkowsky (1984) formulated a general
theory for the interaction of a flame with an incident acoustic wave, whose time
scale is comparable to the transit time of the flame, O(d/UL), where d is the flame
thickness. McIntosh & Wilce (1990) and McIntosh (1991, 1993) analysed effects of
acoustic waves in several distinguished regimes of higher frequencies, while Peters
& Ludford (1984) and Keller & Peters (1994) considered the response of a flame to
general pressure variations occurring on time scales much longer than O(d/UL).

The dynamic impact of an acoustic field on the flame was first recognized by
Markstein (1953). In a series of experiments, Markstein observed that a flame
propagating through a tube developed oscillatory cellular structures, and at the
same time significant pressure fluctuations were generated; the frequency of the latter
was twice that of the flame cells. He proposed that the spontaneous oscillations arose
because of the mutual coupling of two processes: (i) the wrinkling flame modulates
the heat release to drive acoustic motions, and (ii) the acoustic pressure distorts
the flame through ‘acceleration instability’ (i.e. the R-T effect). To substantiate this
mechanism, Markstein & Squire (1955) isolated (ii) by considering the stability of a
flame subjected to an externally prescribed pressure field. They derived a Mathieu-type
equation, which corresponds to the one describing the D-L instability but with the
time-periodic acoustic acceleration being added to the constant gravity acceleration.
The analysis shows that as the forcing exceeds a threshold, which corresponds to
an acoustic velocity about three times of the laminar flame speed, a subharmonic
parametric resonance leads to a massive instability. Further studies by Searby &
Rochwerger (1991) confirmed this instability and in addition found that a moderate
level of acoustic forcing stabilizes the flame. Searby (1992) made further experimental
study of spontaneous radiation of sound waves by an unforced flame. He found that
an initially planar flame develops wrinkles owing to D-L instability, generating a
sound wave as a result. For a low-equivalence-ratio propane–air mixture, the flame-
induced sound has a stabilizing effect, but at high equivalence ratios, it destabilizes
the flame through the subharmonic parametric resonance.

While it has generally been recognized that the mutual interaction between the flame
and its acoustic field is of central importance, most theoretical work is concerned with
one-way coupling: the impact of an (externally imposed) acoustic pressure on flames.
A first-principle description of two-way coupling has to include simultaneously the
inverse process, the influence of a flame on the acoustic field, and this has proved to
be a major challenge. For a planar flame, Clavin, Pelce & He (1990) showed that the
change of the burning rate due to the pressure produces a positive feedback effect on
the acoustic field, so that the mutual interaction leads to exponential growth of the
sound. Pelce & Rochwerger (1992) investigated acoustic instability of a pre-existing
stationary curved flame, where the coupling with the acoustic field is through the heat
release associated with the surface-area change. It should be pointed out that this
problem is different from that of a developing cellular flame described by Markstein
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(1953); the flame-acoustic coupling is linear in the former but nonlinear in the
latter.

Based on the work of Matalon & Matkowsky (1982), a general asymptotic theory
was presented by Wu et al. (2003; referred to as WWMP hereafter) to describe the
acoustic-hydrodynamic-flame coupling in the so-called flamelet regime, where the
acoustic time scale is assumed to be comparable with the hydrodynamic time scale
O(h∗/UL); here h∗ � d is the characteristic length of the flow field. This general
formulation has been used to provide a unified description of the flame-acoustic
coupling mechanisms of Clavin et al. (1990) and Pelce & Rochwerger (1992).

In the present paper, the framework of WWMP will be adapted to investigate
the development of a stable ducted flame under the influence of a small-amplitude
vortical disturbance superimposed on the oncoming mixture. This highly idealized
situation allows us to probe into a key aspect in combustion instability: the dynamical
interaction between a wrinkling flame and its spontaneously induced acoustic field.
The present study is closely related to the observations made by Markstein (1953),
which cannot be adequately explained by the one-way interaction theory of Markstein
& Squire (1955) and Searby & Rochwerger (1991) because the required large-
amplitude external pressure is not usually available in experiments or applications.
The key to providing a complete explanation is to consider the two-way coupling and
include relevant small-amplitude vortical disturbances in the formulation. Specifically,
by analysing the initiation of the subharmonic parametric flame-acoustic resonance
by a small-amplitude disturbance on the basis of first principles, a self-consistent
mathematical description will be given for the closed-loop coupling mechanism
proposed by Markstein (1953). It will be shown that due to this mechanism an
otherwise stable flame may become unstable and noisy without any external acoustic
forcing, just as was observed in experiments.

The rest of the paper is organized as follows: In § 2, we formulate the problem
and then synthesize the key results in the hydrodynamic flame theory of Matalon &
Matkowsky (1982) to form a ‘composite’ flame-acoustic interaction theory with O(δ)
accuracy (cf. WWMP), where δ = d/h∗ � O(1). The linear ‘steady-state’ response of
the flame to small-amplitude vortical perturbation is calculated in § 3. The unsteady
heat release of the wrinkled flame drives acoustic oscillations in the duct, the solution
of which is obtained in § 4. In the case of flame-acoustic resonance, which occurs when
the frequency of the vortical disturbance is one half of the frequency of an acoustic
mode, the induced acoustic pressure may acquire a sufficiently large amplitude to act
back on the flame simultaneously, leading to a fully coupled stage. This scenario is
considered in § 5 for a flame with a fixed mean position. A system describing the
two-way coupling is derived, and the numerical solution shows that the interaction
leads to a violent parametric instability of the flame. In § 6, we consider a moving
flame, for which the resonance is of transient nature, and a slightly modified system
is derived. Relevant numerical solutions are presented in § 7. Main conclusions are
summarized and their implications discussed in § 8.

Vortical disturbances in the present flame-acoustic interaction play a role different
from that considered in WWMP, where they were assumed to have a frequency equal
to that of an acoustic mode. The relevant parameters were such that a marginally
unstable D-L mode existed. A resonant triad then emerged consisting of the D-L
mode, a weak pre-existing acoustic mode and a vortical disturbance. Owing to the
triadic interaction among them, the acoustic pressure amplified considerably but was
not able to acquire O(1) amplitude to induce the parametric instability, as it does in
the present investigation.
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2. Formulation
Consider the combustion of a homogeneous premixed combustible mixture in a

duct of width h∗ and length l∗ � h∗. The fresh mixture enters the duct at a constant
mean velocity U ∗

−, but small-amplitude vortical fluctuations are superimposed on the
oncoming flow. For simplicity, a one-step irreversible exothermic chemical reaction is
assumed. The gaseous mixture consists of a single deficient reactant and an abundant
component so that the progress variable of the reaction can be taken to be the mass
fraction of the former, Y , and the properties are determined by the latter. The mixture
is assumed to satisfy the state equation for a perfect gas.

The fresh mixture has a density ρ−∞ and temperature Θ−∞. Due to steady heat
release, the mean temperature (density) behind the flame increases (decreases) to Θ∞
(ρ∞). The non-dimensionalized activation energy, i.e. the Zeldovich number, is defined
as

β = E∗(Θ∞ − Θ−∞)/RΘ2
∞, (2.1)

where E∗ is the dimensional activation energy and R the universal gas constant. The
flame propagates into the fresh mixture at a mean speed UL and has an intrinsic
thickness d = D∗

th/UL, where D∗
th is the thermal diffusivity. For later reference, we

define the ratio δ and the Mach number M as

δ = d/h∗, M = UL/a∗,

where a∗ = (γp−∞/ρ−∞)1/2 is the speed of sound, with γ denoting the ratio of specific
heats. Other relevant parameters are the Prandtl number Pr , Lewis number Le and
the normalized gravity force

G = gh∗/U 2
L.

Let (x, y, z) and t be space and time variables normalized by h∗ and h∗/UL

respectively, where x is directed along the streamwise direction and y and z are in
the transverse directions. The velocity u ≡ (u, v, w), density ρ and temperature θ are
normalized by UL, ρ−∞ and Θ−∞ respectively. The non-dimensional pressure p is
introduced by writing the dimensional pressure as (p−∞ + ρ−∞U 2

Lp).
The shear viscosity is assumed to be independent of temperature, and the bulk

viscosity is zero. The velocity, pressure, temperature and fuel mass fraction satisfy the
non-dimensional Navier–Stokes equations for reactive flows with the reaction rate Ω

being described by the Arrhenius law:

Ω = ρY exp

{
β

(
1

Θ+

− 1

θ

)}
, (2.2)

where Θ+ = 1 + q is the adiabatic flame temperature.
The mathematical theories for combustion have been developed by assuming a

large activation energy and the Lewis number Le close to unity, or more precisely

β � 1, Le = 1 + β−1l with l = O(1). (2.3)

The thermal-diffusive theory was first to emerge (see e.g. Clavin 1994 for review),
according to which a flame consists of a preheat zone of width O(d), where diffusion
balances advection of mass/heat, and a thinner reaction zone with O(d/β) width,
where species/heat production balances diffusion (Matkowsky & Sivashinsky 1979).
This theory ignores the hydrodynamics and gas expansion. Inclusion of these effects
led to the hydrodynamic theory for flames (Matalon & Matkowsky 1982; Pelce &
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Clavin 1982), which assumes, in addition to β � 1 , that

δ = d/h∗ � 1, M � 1. (2.4)

The flame-flow problem under consideration comprises of three zones. In addition
to the reaction and preheat zones constituting the inner flame structure, a flame
generates, through gas expansion, hydrodynamic motions in an O(h∗) region on each
side of the flame interface. Interaction of a flame with an externally imposed flow
is also ‘mediated’ by this region. While there is a mean density jump across the
flame, the motion on each side is incompressible to leading order. Finally, the flame-
hydrodynamic-acoustic interaction theory of WWMP was formulated by introducing
outer acoustic zones with a longitudinal length scale O(h∗/M) on either side of the
hydrodynamic region. The resulting four regions describe the acoustic, hydrodynamics,
heat transfer and chemical reaction and more importantly the intricate interplay
among them. They are fully interactive in the sense that the final complete solution
relies on the investigation of all these regions. With the preheat and reaction zones
being treated analytically, the direct flame-acoustic interaction is between the acoustic
and hydrodynamic regions.

2.1. Summary of the hydrodynamic theory for a flame

In the hydrodynamic theory of Matalon & Matkowsky (1982) and Pelce & Clavin
(1982), the flame front is given by x = f (y, z, t). A coordinate system attached to the
front,

ξ = x − f (y, z, t), η = y, ζ = z,

is introduced, and the velocity u is split as

u = u i + v,

where i is the unit vector along the duct.
In the hydrodynamic region, the mean density R =R− =1 for ξ < 0 and

R =R+ =1/(1 + q) for ξ > 0. The solution for the flow field and flame front expands
as

(u, v, p, f ) = (u0, v0, p0, f0) + δ(u1, v1, p1, f1) + · · · . (2.5)

The leading-order flow field (u0, v0, p0) satisfies the incompressible Euler equations

∂s0

∂ξ
+ ∇ · v0 = 0,

R

{
∂u0

∂t
+ s0

∂u0

∂ξ
+ v0 · ∇u0

}
= −∂p0

∂ξ
− RG,

R

{
∂ v0

∂t
+ s0

∂ v0

∂ξ
+ v0 · ∇ v0

}
= −∇p0 + ∇f0

∂p0

∂ξ

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.6)

on either side of the flame, where

s0 = u0 − f0,t − v0 · ∇f0. (2.7)

Equations (2.6) are coupled with the front equation

f0,t = u0(0
−, η, ζ, t) − v0(0

−, η, ζ, t) · ∇f0 − [1 + (∇f0)
2]1/2. (2.8)

The flow fields separated by the flame interface are linked through the jumps

[[u0]] = q/m0, [[v0]] = −q∇f0/m0, [[p0]] = −q, (2.9)
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where

m0 = [1 + (∇f0)
2]1/2.

The leading-order system (2.6)–(2.9) suffices for many purposes (e.g. stability
calculations) but is ill posed as an initial-value problem because D-L instability
modes amplify at rates proportional to their wavelengths. A regularized problem may
be derived by including the O(δ) corrections in the hydrodynamic region and in
the jump conditions across the preheat zone. The jumps at this order were obtained
by Matalon & Matkowsky (1982) for the nonlinear case without gravity, and their
analysis was repeated in WWMP with a minor extension of including the gravity
effect. A further modification is required due to the spontaneous acoustic field of
the flame, which generates an O(βM) enthalpy fluctuation (Clavin et al. 1990). The
enthalpy impinges on the flame to drive an O(βM) velocity fluctuation. This part of
motion was considered in WWMP and can be conveniently grouped with the O(δ)
terms by tacitly assuming that

δM ≡ βM/δ = O(1). (2.10)

Then the O(δ) jump in u1 obtained by Matalon & Matkowsky (1982) is modified to

[[u1]] = − q

m3
0

∇f0 · ∇f1 − lqD(q)

2m2
0

{
∇2f0 + m0∇ · v0 +

Dm0

Dt

}
+

q

m0

(
1

2
δMh̃

)
,

+ χm0

{[[
∂ v0

∂ξ
· ∇f0

]]
− q∇ ·

(
∇f0

m0

)
− q

m3
0

∇2f0 +
2q

m4
0

∇m0 · ∇f0

}
, (2.11)

where

h̃ = (γ − 1)pa(0, t) (2.12)

with pa(0, t) being the scaled acoustic pressure at the flame front (see next subsection).
The leading-order jump [[u0]] in (2.9) and [[u1]] can be combined to give [[u]] to
O(δ) accuracy. Note that the −(q/m3

0) ∇f0 · ∇f1 in (2.11) is simply the second term
in the expansion of q/m for f = f0 + δf1 + O(δ2). This term can be absorbed into
q/m, if we collect the first two terms in the expansions for f and u as a ‘synthesized’
approximation, which is actually more convenient to use. In general, by such synthesis
it follows that [[u]], to O(δ) accuracy, can be written as (cf. Matalon & Matkowsky
1982)

[[u]] =
q

m

(
1 +

1

2
βMh̃

)
+ δ

{
−qlD

2m2
Γ +

χq

(1 + q)m2
Γ v · ∇f

}
, (2.13)

where

Γ = ∇2f + m∇ · v− +
Dm

Dt
, Γ v =

D̃ v−

D̃t
+ ∇f

D̃u−

D̃t
+

1

m

D̃

D̃t
∇f + G∇f.

Similarly, the transverse velocity and pressure jumps can be written as

[[v]] = −[[u]]∇f + δ
χq

1 + q
Γ v, (2.14)

[[p]] = −2m[[u]] + δ

{
q∇ ·

(
∇f

m

)
+

(
m

D̃u−

Dt
+

1

m

D̃m

Dt
+ mG

)
ln(1 + q)

+
q(Pr + χ)

(1 + q)m
Γ v · ∇f

}
, (2.15)
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where u− and v− and their derivatives are evaluated at the flame front; ξ = 0−; and

D(q) =

∫ ∞

0

ln(1 + q e−x) d x, χ = Pr +
1 + q

q
ln(1 + q),

D

Dt
=

∂

∂t
+ v− · ∇,

D̃

D̃t
=

D

Dt
+

∇f · ∇
m

,

as in Matalon & Matkowsky (1982). The relation (2.14) can alternatively be expressed
as

[[v]] = −[[u]]∇f + δ

{
Pr m

[[
∂

∂ξ
(v +u∇f )

]]
+ qP r

∇m

m
+ ln(1 + q)Γ v

}
. (2.16)

The function f satisfies the equation (cf. Matalon & Matkowsky 1982)

ft = u− − v− · ∇f − m

(
1 +

1

2
βMh̃

)
+ δMa

{
∇2f + m∇ · v− +

Dm

Dt

}
, (2.17)

where

Ma =
1 + q

q
ln(1 + q) + 1

2
lD.

The linearized version of (2.13)–(2.17) was given by Pelce & Clavin (1982). As is well
known, the O(δ) terms account for the effects of thermal diffusion and flame curvature.
They stabilize D-L modes with wavelengths shorter than a cutoff length, provided
that the Lewis number is sufficiently close to unity, and consequently the initial-value
problem becomes well posed. The D-L instability may be suppressed completely
across all wavelengths, and a planar flame is rendered intrinsically stable when the
laminar flame speed UL and/or the gas expansion parameter q are sufficiently small.

2.2. A general composite theory of flame-acoustic interaction

2.2.1. Acoustic zone

The acoustic-flame coupling theory of WWMP results from introducing an outer
acoustic region. The appropriate variable describing the acoustic motion in this region
is

ξ̃ = Mξ. (2.18)

The motion is a longitudinal oscillation about the uniform mean background, and
the solution can be written as

(u, ρ, θ) = (U±, R±, Θ±) + (ua(ξ̃ , t), Mρa(ξ̃ , t), Mθa(ξ̃ , t)), p = M−1pa(ξ̃ , t), (2.19)

where U± are the mean velocities of the burned and the fresh mixture respectively,
with U+ − U− = q . Strictly speaking, the acoustic field (ua, pa, θa, ρa) should formally
be expanded as an asymptotic series in terms of the small parameters δ and βM , since
the source consists of terms at these orders (see (2.22)). However, it is convenient to
take a composite approach, which keeps all these terms together with the leading-order
term.

The unsteady field is governed by the linearized acoustic equations. Elimination of
θa and ρa among them yields the wave equations for velocity ua and pressure pa ,

R
∂2ua

∂t2
− ∂2ua

∂ξ̃ 2
= 0, R

∂ua

∂t
= −∂pa

∂ξ̃
. (2.20)
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As ξ̃ → ±0,

ua → ua(0
±, t) + · · · , pa → pa(0, t) + pa,ξ̃ (0

±, t)ξ̃ + · · · .

As will be shown in the next subsection, the acoustic pressure is continuous across
the flame, but the flame induces a jump in ua , i.e.

[pa] = 0 , (2.21)

[ua] ≡ J = q
{

(1 + (∇F )2)1/2 − 1
}

− δ
qlD
2

∂

∂t
(1 + (∇F )2)1/2

+ βMq

(
1

2
h̃

)
(1 + (∇F )2)1/2, (2.22)

where φ denotes the space average of φ in the (η, ζ )-plane and F is defined in (2.34)
below. The jump [ua] acts as an acoustic source, through which the flame may excite
acoustic modes of the duct. The result (2.22) provides an explicit relation between the
source of sound and the property of the flame. As expected on physical ground, the
primary source corresponds to alteration of the flame surface area. However, there
is also an O(δ) contribution by the instantaneous rate of change of the surface area.
This secondary source, which vanishes for unity Lewis number, is associated with the
thermal-diffusive structure of the flame and acts to moderate the main contribution
in (2.22). The O(βM) term is due to the effect of the acoustic pressure on the burning
rate, and it extends the result of Clavin et al. (1990) for a planar flame to a curved
flame in the corrugated flamelet regime. Unlike other terms in (2.22), it represents an
amplification rather than a generation mechanism of sound waves, since the forcing
h̃ is the acoustic pressure (see (2.12)).

At the two ends of the duct, the following conditions may be imposed:

ua = 0 at ξ̃ = −σL, pa = 0 at ξ̃ = (1 − σ )L, (2.23)

where L =Ml∗/h∗ and σ is a parameter characterizing the mean position of the flame
front.

For an arbitrary forcing J(t), a formal general solution for the acoustic field can
be constructed by introducing the causal Green’s function G(ξ̃ , t |τ ), defined as

R±
∂2G
∂t2

− ∂2G

∂ξ̃ 2
= 0,

G = 0 at ξ̃ = −σL, ∂G/∂ξ̃ = 0 at ξ̃ = (1 − σ )L,

[G] = δ(t − τ ),

[
∂G

∂ξ̃

]
= 0 at ξ̃ = 0,

G = ∂G/∂t = 0 for t < τ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.24)

Obviously, G depends on t and τ through the combination (t −τ ), i.e. G = G(ξ̃ ; t −τ ).
In terms of G, the general solution for ua can be written as

ua(ξ̃ , t) =

∫ t

0

G(ξ̃ ; t − τ )J(τ ) dτ,

where we have used the fact that J(t) = 0 for t < 0.
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The system (2.24) can be solved by taking Fourier transform with respect to (t − τ ),
to obtain the Fourier transform of G, defined as

Ĝ(ξ̃ ; ω) =

∫ ∞

−∞
G(ξ̃ ; t − τ ) e− iω(t−τ ) d(t − τ ).

It is found that

Ĝ(ξ̃ ; ω) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−

(
R+

R−

)1/2

tan
(
R

1/2
+ (1 − σ )ωL

)
�s(ω; σ ) cos

(
R

1/2
− σωL

) sin
[
R1/2

− (ξ̃ + σωL)
]
, ξ̃ < 0,

−
cos
[
R

1/2
+ (ξ̃ − (1 − σ )ωL)

]
�s(ω; σ ) cos

[
R

1/2
+ (1 − σ )ωL

] , ξ̃ > 0,

(2.25)

where

�s(ω; σ ) =

(
R+

R−

)1/2

tan
(
R1/2

− σωL
)
tan
(
R

1/2
+ (1 − σ )ωL

)
− 1. (2.26)

The characteristic frequencies of acoustic modes of the duct are given by the
eigenrelation

�s(ωk; σ ) = 0, (2.27)

which has countable number of roots, ωk (k = 1, 2, . . .) say. The inverse of (2.25)
gives

G(ξ̃ ; t − τ ) =
1

2π

∫ ∞−i 0

−∞−i 0

Ĝ(ξ̃ ; ω) eiω(t−τ ) dω, (2.28)

where ‘− i 0’ indicates that the contour in the complex ω-plane is taken to be a line

below the real poles (zeros) of Ĝ (�s) in order to ensure causality. Note that Ĝ
remains bounded so that the entire integrand decays exponentially as Im(ω) > 0.
By closing the contour in the upper half-plane and using the residual theorem, the
inversion can be evaluated analytically to obtain

G(ξ̃ ; t − τ )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∑

k

i
(

R+

R−

)1/2

tan
(
R

1/2
+ (1 − σ )ωkL

)
�′

s(ωk; σ ) cos
(
R

1/2
− σωkL

) sin
[
R1/2

− (ξ̃ + σωkL)
]
eiωk(t−τ ), ξ̃ < 0,

−
∑

k

i cos
[
R

1/2
+ (ξ̃ − (1 − σ )ωkL)

]
�′

s(ωk; σ ) cos
[
R

1/2
+ (1 − σ )ωkL

] eiωk(t−τ ), ξ̃ > 0.

(2.29)

Since the analysis of acoustic-flame interaction requires the acoustic signature at
the flame front ξ̃ = 0± only, it suffices to consider G(0±; t − τ ), which resumes a
simpler expression

G(0±; t − τ ) = −δ(t − τ )h(−0±) −
∑

k

i eiωk(t−τ )

�′
s(ωk; σ )

dω, (2.30)

where h(−0−) = 1 and h(−0+) = 0, and the summation is over all roots of the
acoustic dispersion relation (2.27). Use of (2.30) allows for calculation of the local
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acoustic velocity

ua(0
±, t) = −J(t)h(−0±) −

∑
k

i

�′
s(ωk; σ )

∫ t

0

eiωk(t−τ ) J(τ ) dτ. (2.31)

For the purpose of comparison, we note that the Green function for an unbounded
domain is

G(ξ̃ ; t − τ ) = ±R
1/2
∓
/(

R
1/2
+ + R1/2

−

)
δ
(
t − τ ∓ R

1/2
± ξ̃
)

. (2.32)

It then follows that

ua(ξ̃ , t) = ±R
1/2
∓
/(

R
1/2
+ + R1/2

−

)
J
(
t ∓ R

1/2
± ξ̃
)

. (2.33)

The result (2.31) indicates that a flame in a bounded domain may be in resonance
with natural acoustic modes of the chamber (duct), for which case J would behave
approximately as ei ωkt so that the second term in (2.31) would be very large. Such a
resonance is of course not possible for a flame in open space, and as a result the back
effect of spontaneous sound waves on the flame, though also present, is likely to be
weak.

2.2.2. Hydrodynamic zone

The formulation of WWMP can be extended to construct a composite theory with
O(δ) accuracy by retaining the O(δ) viscous effect in the hydrodynamic zone and by
using the synthesized O(δ) accurate jumps (2.13)–(2.15).

In the hydrodynamic zone, the velocity and pressure are decomposed as

u = U± + ua(0
±, t) + U, f = Fa(t) + F,

p = M−1pa(0, t) + P± +
(
pa, ξ̃ (0

±, t) − RG
)
(ξ + F ) + P,

}
(2.34)

where P± is the mean pressure (with P+ − P− = −q) and

F ′
a(t) = U− − 1 + ua(0

−, t) − 1

2
βMh̃. (2.35)

The flame front equation (2.17), to O(δ) accuracy, may be written as

Ft + V − · ∇F = U− − (m − 1)

(
1 +

1

2
βMh̃

)
+ δMa

{
∇2F + m∇ · V − +

Dm

Dt

}
, (2.36)

where we have put v = V .
The composite equations governing the hydrodynamics therefore read (cf. WWMP)

∂U

∂ξ
+ ∇ · V =

∂ V
∂ξ

· ∇F,

R

(
∂Ũ

∂t
+ S

∂U

∂ξ
+ V · ∇U

)
+ (1 + RJh(ξ ))

∂U

∂ξ
= −∂P

∂ξ
+ δP r�U,

R

(
∂ V
∂t

+ S
∂ V
∂ξ

+ V · ∇ V

)
+ (1 + RJh(ξ ))

∂ V
∂ξ

= −∇P + ∇F
∂P

∂ξ
+ δP r� V ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.37)

where h(ξ ) is the Heaviside step function and

J = [ua], S = U − Ft − V · ∇F.
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The Laplace operator � is defined by

� = (1 + (∇F )2)
∂2

∂ξ 2
+ ∇2 − ∇2F

∂

∂ξ
− 2

∂

∂ξ
(∇F · ∇),

with the operators ∇ and ∇2 being defined with respect to η and ζ . The velocity and
pressure satisfy the upstream condition,

(U, V ) → (Ue, V e) , Pξ → 0 as ξ → −∞, (2.38)

in order to match with the oncoming vortical disturbance (Ue, V e).
By the same procedure as in § 3 of WWMP, it can be shown that

J = [ua] = −[[V ]] · ∇F + [[u]] − q, (2.39)

[[U ]] =
(
[[u]] − [[u]]

)
+ [[V ]] · ∇F . (2.40)

Inserting (2.13) and (2.14) into the above equations, we obtain (2.22) and

[[U ]] = q
{

(1 + (∇F )2)−1/2 − (1 + (∇F )2)1/2

}(
1 +

1

2
βMh̃

)
+ δ

{
−qlD

2m2

[
∇2F + ∇ · (m V −) +

∂m

∂t
− m2 ∂m

∂t

]
+

χq

(1 + q)m2

[
D̃ V −

D̃t
+ ∇F

D̃U−

D̃t
+

1

m

D̃

D̃t
∇F + (G + ua,t (0

−, t))∇F

]
· ∇F

}
.

(2.41)

The transverse velocity jump (2.14) may be rewritten as

[[V ]] = −[[u]]∇F +
δχq

(1 + q)

[
D̃ V −

D̃t
+ ∇F

D̃U−

D̃t
+

1

m

D̃

D̃t
∇F +

(
G + ua,t (0

−, t)
)
∇F

]
(2.42)

or, if (2.16) is preferred,

[[V ]] = − [[u]] ∇F + δ

{
Pr m

[[
∂

∂ξ
(V +U∇f )

]]
+ qP r

∇m

m

+ ln(1 + q)

[
D̃ V −

D̃t
+ ∇F

D̃U−

D̃t
+

1

m

D̃

D̃t
∇F +

(
G + ua,t (0

−, t)
)
∇f

]}
. (2.43)

The pressure jump (2.15) becomes

[[P ]] = [(R+ − R−)G − �pa,ξ̃ ]F − 2m[[u]]

+ δ

{
q

m
∇2F +

[
m

D̃U−

D̃t
+

1

m

D̃m

D̃t
+m(G + ua,t (0

−, t))

]
ln(1 + q) − q

m2
∇F · ∇m

+
q(Pr + χ)

(1 + q)m

[
D̃ V −

D̃t
+ ∇F

D̃U−

D̃t
+

1

m

D̃

D̃t
∇F +

(
G + ua,t (0

−, t)
)
∇F ] · ∇F

}
,

(2.44)
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where we have put

�pa,ξ̃ (t) = pa, ξ̃ (0
+, t) − pa, ξ̃ (0

−, t) ≡ −{R+ua,t (0
+, t) − R−ua,t (0

−, t)}. (2.45)

This term represents the unsteady R-T effect, arising from the acoustic acceleration
ua,t (or local pressure gradient), since ua,t plays the same role as the gravity
G. Neglecting this effect in the G-equation approach constitutes its severest
limitation.

The result (2.22) indicates that an unsteady curved flame must generate an acoustic
field. Meanwhile, relations (2.44) and (2.45) show the emitted sound waves act on
the flame through the R-T effect. For freely propagating flames, barring the direct
effect on the burning, this is the sole mechanism by which the acoustic field affects
the flame because the acoustic velocity causes merely a ‘rigid’ vibration of the flame
without inducing any distortion. For anchored flames, acoustic pressure and velocity
are both important.

The great majority of theoretical and computational work on flame dynamics
and combustion, however, excludes a priori the acoustic field at the outset. This
amounts to an ad hoc approximation, since an acoustic field is, as (2.22) and (2.31) (or
(2.33)) imply, an intrinsic and inseparable part of an unsteady flame. Mathematical
inconsistency could arise as analytical or numerical solutions obtained in this manner
may contradict the approximation made. These solutions ought to be scrutinized
closely before being accepted. For example, the acoustic field of a time-dependent
solution has to be estimated posteriorly (e.g. by solving the acoustic equation subject
to (2.22)), and only when it is found to be weak may the solution qualify for a
mathematically acceptable approximation; otherwise the solution is most likely to be
a spurious one. A steady solution is deemed to be mathematically acceptable, but its
physically realizability depends on its stability. To formulate an appropriate stability
theory, one must recognize that a small perturbation to a general curved flame would
necessarily cause an acoustic perturbation of the same order of magnitude. The latter
must therefore be included in the stability analysis, and its presence may drastically
alter the stability property (cf. Pelce & Rochwerger 1992).

The composite theory of flame-acoustic interaction is valid under the assumptions
(2.3), (2.4) and (2.10). For the general case of a strongly wrinkling flame (i.e. ∇F ∼
O(1)) and an order-one flow field, the error in the theory is O(δ2 + M), arising from
neglecting O(δ2) effects in the hydrodynamic region and O(M) convection terms in
the acoustic equations. In the rest of the paper the general fully nonlinear theory will
be specialized to small perturbations, where F and (U, V, W, P ) have an amplitude
ε � 1. Analytical progress becomes possible, since the hydrodynamic equations and
the jumps can then be linearized. This approximation results in an additional error
O(ε2). On the other hand, we shall retain the O(δε) linear corrections in order to
render the initial-value problem well posed. For the neglected O(ε2) nonlinear terms
to be smaller, it would formally be required that ε � δ. This condition is, however,
unlikely to be met in practice, since δ is usually quite small (O(10−3)). As a result, the
O(ε) relative error due to neglecting the hydrodynamic nonlinearity may be greater
than O(δ). A regular perturbation procedure can in principle be adopted to eliminate
the O(ε) relative error by including the effect of O(ε2) nonlinear terms. Refinement
along this line requires a lengthy calculation and will be pursued here. As we shall
argue, an analysis based on linearized hydrodynamics should be able to capture
qualitative behaviours of the flame-acoustic interaction, provided that ε is reasonably
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small. It is worth stressing that despite the presence of the O(ε) error, the validity of
the ensuing analysis is ensured by conditions (2.3), (2.4) and (2.10).

Finally, it is worth noting that after subtracting out the local acoustic signature
ua(0

±, t), the longitudinal velocity jump [[U ]] of the pure hydrodynamic field, (2.41),
consists of two transversely averaged terms. Taking into account the leading-order
one, we repeated the weak-heat-release analysis (q � O(1)) of Sivashinsky & Clavin
(1987) to extend the M-S equation to O(q) and found that the modified jump gives
rise to the transversely averaged term that was found to be missing by Joulin &
Cambray (1992). The latter authors retrieved this term on physical ground. We now
note that it can actually be derived systematically.

3. Linear response and flame wrinkling
A vortical disturbance in the form of convected gusts is assumed to be superimposed

on the oncoming fresh mixture. In general, the disturbance has a continuous spectrum
and may be represented by an integral over all Fourier components (Searby & Clavin
1986; Aldredge & Williams 1991):

(u, v) = ε

∫ ∞

−∞

∫ ∞

−∞
(C−(k†, ω), D−(k†, ω)) ei(k1ξ+k2η+k3ζ−ωt) dk† dω, (3.1)

where ε measures the magnitude; k† = (k2, k3) is the transverse wavenumber vector;
and k1 = ωR− to leading order, since the disturbance is advected passively by the
uniform background flow. Functions C−(k†, ω) and D−(k†, ω) characterize the spectral
property. For a small-amplitude disturbance (ε � O(1)) of interest in this paper, each
component can be treated independently, and so it suffices to focus on a single Fourier
mode. The oncoming flow field then takes the form

(u, v) = ε(C−, D−) ei(k1ξ+k2η+k3ζ−ωt) + c.c. (3.2)

Note that pressure fluctuation is absent.
The oncoming disturbance induces a hydrodynamical field. For ε � O(1), the

governing equations (2.37) can be linearized. Hereafter throughout the paper, a
planar flame is assumed to be established in the stable regime of the parameter space.
Then a steady-state response can be reached, for which the solution takes the form

(U, V , P , F ) = ε(Ū , V̄ , P̄ , F̄ ) ei(k2η+k3ζ−ωt) + c.c., (3.3)

where F̄ is independent of ξ . After substituting it into linearized equations (2.37), it
is easily found that

P̄ = P± e∓kξ , Ū =
∓kP± e∓kξ

iR±ω ± k
+ C± ei S±ξ , V̄ =

i k† P± e∓kξ

i R±ω ± k
+ D± ei S±ξ , (3.4)

where k = (k2
2 + k2

3)
1/2 and

S± =
{

−i − i(1−4(i ωR±δP r−k2δ2Pr2))1/2
}
/(2δP r) = ωR±+i Pr(k2+ω2R2

±)δ+O(δ2).

The constants C± and D± are related by

S±C± + k† · D± = 0, (3.5)
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so as to satisfy the continuity equation. Inserting the solution into the linearized jump
conditions (2.41)–(2.44) and front equation (2.36), we obtain

P+ − P− = (R+ − R−)GF̄ + δJp,

−kP+

iR+ω + k
+ C+ =

kP−

iR−ω − k
+ C− + δJu,

i k† P+

iR+ω + k
+ D+ =

i k† P−

iR−ω − k
+ D− − i q k† F̄ + δ Jv,

− iωF̄ =
kP−

iR−ω − k
+ C− + δJF ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.6)

where

Jp = lqD
[

−k2F̄ − k2P−

iR−ω − k
+ i k† · D−

]
− qk2F̄ − iω ln(1 + q)

[
kP−

i R−ω − k
+ C−

]
,

Ju = −1

2
lqD

[
−k2F̄ − k2P−

iR−ω − k
+ i k† · D−

]
,

Jv =
qχ

1 + q

{
(− i ω)

i k† P−

iR−ω − k
− i ωD− + (− i ω) i k† F̄ + G i k† F̄

}
, (3.7)

JF =

(
1 + q

q
ln(1 + q) +

1

2
lD
)[

−k2F̄ − k2P−

iR−ω − k
+ i k† · D−

]
.

Equations (3.5) and (3.6) are solved to obtain

F̄ =
−2(k − i ωR−)(1 − i δQF )C−

�(k, ω)
, (3.8)

where

QF =

[
1 + q

q
ln(1 + q) +

1

2
lD
]
ω + (q + 1)

[
1

q
ln(1 + q) +

1

2
lD
]
ik, (3.9)

�(k, ω) = Aω2 + i Bω − C, (3.10)

with

A =

{
(R+ + R−) + δ

[
(q + 2)

q
ln(1 + q) + lD

]
k

}
,

B = 2k

{
1 + δ

[
2(q + 1)

q
ln(1 + q) +

1

2
(q + 2)lD

]
k

}
,

C = −(qk2 + k(R+ − R−)G)

[
1 + δ

(1 + q)

q
ln(1 + q)k

]
+δk3

[
q + (q + 1)lD +

(q + 1)(q + 2)

q
ln(1 + q)

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.11)

Note that the result is independent of the Prandtl number, Pr . Obviously, a regular
perturbation procedure can be employed to compute the O(ε2) nonlinear response.
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4. Acoustic field of a wrinkling flame
4.1. Non-resonant case

For a vortical disturbance in the form of a single spatial component (3.2), the flame
wrinkles so that its total surface area increases. However, the transversely averaged
flame surface area is independent of time, and as a result no longitudinal acoustic
pressure is generated in this special case. Hereafter, we assume that the vortical
disturbance consists of four spatial components:

k† = (k2, k3), k̄
†
= (k2, −k3), −k̄

†
= (−k2, k3), − k† = (−k2, −k3), (4.1)

the supposition of which represents standing waves in both transverse directions. The
flame position F takes the form

F = F̄ cos(k2η) cos(k3ζ ) e− iωt + c.c., (4.2)

with F̄ being still given by (3.8), since the flame responds to each mode independently.
Now the transversely averaged flame area oscillates periodically with time t , with a
frequency 2ω. On using (2.22), the unsteady heat release rate can be computed as

J = ε2 8qk2(k − iωR−)2

�2(k, ω)
(1−i δQF )2(1+i ωlDδ)2C2

− e2 iωt + c.c. ≡ ε2Ĵ e2 iωt + c.c., (4.3)

through which the unsteady wrinkling flame radiates sound. Here the O(βM) term
in (2.22) is neglected, causing an O(βM) error in the acoustic response, which should
be quite acceptable.

In order to contrast with a ducted flame as well as to emphasize the fact that an
acoustic field is an intrinsic part of a flame, we briefly consider the flame in open
space. In this case, the emitted sound propagates outwards on either side of the flame,
and so the solution for the acoustic pressure and velocity may be written as

(pa, ua) =

{
ε2(1, R

−1/2
+ )ar e2 iω(t−R

1/2
+ ξ̃ ) + c.c., ξ̃ > 0,

ε2(1, −R
−1/2
− )al e

2 iω(t+R
1/2
− ξ̃ ) + c.c., ξ̃ < 0.

On applying the conditions at ξ̃ = 0, we find that

ar = al = Ĵ/(R−1/2
+ + R−1/2

− ).

Now return to the flame in the duct. A crucial difference from the open-flame
case is that a duct supports acoustic modes with discrete eigenfrequencies so that a
resonance may occur. On assuming that the frequency 2ω does not coincide with any
of those eigenfrequencies, a steady-state response of O(ε2) can be established. The
solution may be written as

pa = ε2

{
a±

r e−2 i R
1/2
± ωξ̃ +a

±
l e2 iR

1/2
± ωξ̃

}
e2 iωt + c.c., (4.4)

ua = ε2R
−1/2
±

{
a±

r e−2 i R
1/2
± ωξ̃ −a

±
l e2 iR

1/2
± ωξ̃

}
e2 iωt + c.c., (4.5)

where ± refers to the regions ξ̃ > 0 and ξ̃ < 0 respectively. The jump conditions
across the hydrodynamic region, (2.21) and (2.22), yield

a−
r + a−

l = a+
r + a+

l , a−
r − a−

l −
(

R−

R+

)1/2

(a+
r − a+

l ) = −R1/2
− Ĵ. (4.6)
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From (4.4), (4.5) and (2.23) it follows that

a−
r e2 iR

1/2
− σωL −a−

l e−2 i R
1/2
− σωL = 0, a+

r e−2 i R
1/2
+ (1−σ )ωL +a+

l e2 iR
1/2
+ (1−σ )ωL = 0. (4.7)

For the non-resonant case, for which �s(2ω; σ ) �= 0, we find that

a−
l = −

i ĴR
1/2
+ tan

(
2R

1/2
+ (1 − σ )ωL

)
2�s(2ω; σ ) cos

(
2R

1/2
− σωL

) e2 iR
1/2
− σωL, (4.8)

and the acoustic pressure level at the entrance (which we take to represent the sound
field)

|pa| =

R
1/2
+ |Ĵ| tan

(
2R

1/2
+ (1 − σ )ωL

)
�s(2ω; σ ) cos

(
2R

1/2
− σωL

) , (4.9)

where �s(ω) is given by (2.26). The ratio |pa|/J corresponds to a transfer function.
Again, the analysis can easily be generalized to include the acoustic contribution

from the O(ε2) nonlinearly generated flame wrinkling.

4.2. Resonant case

The acoustic wave is merely a small passive by-product in the non-resonant case.
However, if the condition

2ω = ωk, i.e. �s(2ω; σ ) = 0, (4.10)

is satisfied for some integer k and σ , the forcing is in resonance with the kth acoustic
mode of the duct, generating strong acoustic pressure. The ensuing response depends
on whether the flame is moving or if its mean position is fixed, as will be shown in
the next two sections.

Although resonant excitation of acoustic modes occurs strictly for sinusoidal
vortical disturbances with specific frequencies, it can be relevant for perturbations or
‘turbulence’, represented by (3.1) with a continuous spectrum. In this general case, the
acoustic source J must be expressed at leading order as a Fourier integral

J = ε2

∫ ∞

−∞
Ĵ(ω) eiωt dω. (4.11)

Use of this in (2.31) shows that the induced acoustic velocities ua(0
±, t) have Fourier

components at frequencies ωk ,

ûa(0
±, ωk) = ε2

{
−Ĵ(ωk)h(−0±) −

[
i Ĵ(ωk)

�′(ωk; σ )

]
t

}
, (4.12)

which amplify algebraically (linearly) in time, while components at all other
frequencies remain bounded, suggesting that at large time the acoustic field may
be dominated by duct modes.

As a demonstration, we consider an oncoming disturbance consisting of four spatial
components as represented by (4.1) but with a continuous frequency spectrum, which
is assumed to be Gaussian for simplicity. The corresponding C− is given by

C−(k̃
†
, ω) = [δ(k̃

† − k†) + δ(k̃
†
+ k†) + δ(k̃

† − k̄
†
) + δ(k̃

†
+ k̄

†
)]Φ(ω), (4.13)
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with

Φ(ω) =
1

σs

exp
{

− (ω − ωp)2/σ 2
s − (ω + ωp)2/σ 2

s + 4ω2
p/σ 2

s

}
, (4.14)

where ±ωp represents the peak frequencies and σs is a measure of the bandwidth;
statistically, σ −1

s represents the correlation time of the oncoming disturbance. The
solution for F may be written as (cf. (4.15))

F = cos(k2η) cos(k3ζ )

∫ ∞

−∞
F̂ (ω) e− iωt dω, (4.15)

where F̂ = T(ω)Φ(ω) with T(ω) being given by the right-hand side of (3.8) with
C− = 1. It follows from (2.22) and (4.11) that

Ĵ(ω) =
qk2

π

∫ ∞

−∞
F̂ (ω̃)F̂ (ω − ω̃) dω̃.

The expression for Ĵ involves in general a convolution of T with itself but can be
approximated as

Ĵ(ω) =
qk2

√
2πσs

T2(ω/2) exp

{
−1

2
(ω−2ωp)2/σ 2

s −1

2
(ω+2ωp)2/σ 2

s +8ω2
p/σ 2

s

}
, (4.16)

in the limit σs � O(1). Now assume that the resonant condition 2ωp = ωk (k = 1
say) is satisfied. Inserting (4.11) with (4.16) into (2.31), we find that for 1 � t � σ −1

s ,

ua(0
±, t) ∼ −ε2

{
T2(ωk/2)

�′
s(ωk; σ )

(i eiωkt + c.c.)

}
t. (4.17)

The above analysis can be generalized to an arbitrary spectrum that exhibits discrete
peaks at acoustic frequencies with their bandwidth σs � O(1). Acoustic modes can
emerge from a perturbation possessing such a spectrum. Even more generally, the
resonance-induced algebraic growth occurs as long as (1/t)

∫ t

0
J(τ ) eiωkτ dτ attains

an O(1) asymptote for a sufficiently large time t , as may be deduced from (2.31).
For an arbitrary vortical disturbance with a long correlation time scale σ −1

s � O(1),
this requirement is likely to be met for 1 � t � σ −1

s . Given that the acoustic field
excited by such a disturbance with a continuous spectrum approaches asymptotically
that generated by sinusoidal perturbations, one may expect essential features of the
ensuing flame-acoustic interaction to be captured by an idealized model for a vortical
disturbance with a single resonant frequency.

Finally, we note that if the O(ε2) nonlinear hydrodynamic fluctuation is included,
it would contribute to the acoustic source an O(ε3) correction, whose dependence on
time is e3 iωkt . Unlike the leading-order source (4.11), this small correction is not in
resonance with any acoustic mode, suggesting that the O(ε2) nonlinear hydrodynamic
fluctuation would play a secondary role in the flame-acoustic interaction, and its
omission should not alter the qualitative behaviours that we shall describe.

5. Resonant interaction between flame and spontaneously generated acoustic
modes: flame with a fixed mean position

If the mean velocity of the fresh mixture equals the laminar flame speed, then the
mean position of the flame remains fixed with respect to the laboratory coordinate,
even though it oscillates sinusoidally with both time and space. The resonance
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condition (4.10) holds all the time. We will show in this section that the flame-
acoustic resonance causes the entire system to evolve through two distinct regimes of
development.

5.1. Regime I: back action of the induced acoustic field on the flame

Owing to the resonant response of the duct mode to the wrinkling flame, the intensity
of the radiated acoustic field amplifies proportionally to time t , i.e. ua ∼ ε2t . It
acquires an O(1) amplitude when t ∼ O(ε−2), by which stage the acceleration of the
acoustic field acts back on the flame through the R-T effect, and the flame and its
induced acoustic field become mutually coupled. To describe the evolution towards
and during this regime, we introduce the slow (long) time variable

τ = ε2t. (5.1)

Due to the back action of the induced acoustic acceleration on the flame, the
solution for the hydrodynamic field is no longer purely sinusoidal in time but must
have a general dependence on time t . The dependence on the transverse variables
nevertheless remains sinusoidal, since the flame and its hydrodynamic field remains
linear. Thus the solution may be sought of the form⎧⎪⎨⎪⎩

U

V
P

F

⎫⎪⎬⎪⎭ = ε

⎧⎪⎪⎨⎪⎪⎩
Ũ (ξ, t)
Ṽ (ξ, t)
P̃ (ξ, t)
α(t)

⎫⎪⎪⎬⎪⎪⎭ ei(k2η+k3ζ ) + · · · , (5.2)

where the other spatial Fourier components with k̄
†
, (−k̄

†
) and (− k†) are not written

out explicitly. It suffices to consider one of them, k†, as representative, since all behave
similarly. All four have to be taken into account when calculating J, of course.

The O(δ) corrections to the hydrodynamic field and to the jump conditions are
not central to the flame-acoustic resonance. For simplicity, we present the derivation
using the inviscid version of (2.37) and the leading-order approximation for the jumps
across the flame zone. The extension to include the O(δ) corrections in (2.37) and in
jumps is relegated to the appendix. With O(δ) viscous terms in (2.37) being neglected,
the solution can be found as

Ũ =

{
φ−(t) ekξ +C− exp{iω(R−ξ − t)}, ξ < 0,

φ+(t) e−kξ +C+(t − R+ξ ), ξ > 0,
(5.3)

Ṽ =

⎧⎪⎪⎨⎪⎪⎩
i k†

k
φ−(t) ekξ +D− exp{iω(R−ξ − t)}, ξ < 0,

− i k†

k
φ+(t) e−kξ +D+(t − R+ξ ), ξ > 0,

(5.4)

P̃ =

⎧⎪⎪⎨⎪⎪⎩
−1

k
(R−φ′

− + kφ−) ekξ̃ , ξ < 0,

1

k
(R+φ′

+ − kφ+) e−kξ̃ , ξ̃ > 0,

(5.5)

where C+ and D+ are arbitrary functions. It follows from the continuity equation
that

−R+C ′
+(t) + i k† · D+ = 0, (5.6)
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while the jump conditions give rise to the relations

(R+φ′
+ − kφ+) = −(R−φ′

− + kφ−) + k{(R+ − R−)G − �pa,ξ̃ }α,

φ+ + C+ = φ− + C− exp{− iωt},

− i k†

k
φ+ + D+ =

i k†

k
φ− + D− exp{− iωt} − i k† qα,

α′ = φ− + C− exp{− iωt}.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.7)

After eliminating φ±, C+ and D+, we obtain

(R+ +R−)α′′(t)+2k α′(t)−{qk2 +k((R+ −R−)G−�pa,ξ (t))}α = N0 e− iωt + c.c., (5.8)

where �pa,ξ̃ is given by (2.45) and

N0 = 2(k − iωR−)C−.

Note that the final result (5.8) is independent of the polarity of the wave disturbance,
which means that the same result can be derived if any of the other three components
is considered. Equation of the form (5.8) was derived by Markstein & Squire (1955)
for an externally imposed acoustic field. In the absence of any oncoming vortical
disturbance and acoustic feedback, it reduces to the one governing the D-L instability.

From (2.22), the jump in the acoustic velocity is obtained as J = ε2Ĵ e2 iωt + c.c.,
with

Ĵ = 2qk2(π/ω)

∫ ω/π

0

α2(t) e−2 iωt
d t +

1

2
q(βM/ε2)h̃, (5.9)

where the second term represents the acoustic instability mechanism due to the
acoustic pressure modifying the burning rate. This effect is negligible when

ε2 � βM, (5.10)

but it is retained here for completeness.
For τ = O(1), the solution for the acoustic field expands as

pa = B(τ )pa,1 + ε2pa,2 + c.c. + · · · , ua = B(τ )ua,1 + ε2ua,2 + c.c. + · · · , (5.11)

where B(τ ) represents the amplitude of the acoustic mode. At leading order, pa,1 and
ua,1 satisfy (2.20), and they have the solution

pa,1 = e2 i ωt
{

a±
r e−2 i R

1/2
± ωξ̃ +a

±
l e2 iR

1/2
± ωξ̃

}
≡ p̂a,1 e2 iωt ,

ua,1 = e2 i ωt R
−1/2
±

{
a±

r e−2 i R
1/2
± ωξ̃ −a

±
l e2 iR

1/2
± ωξ̃

}
≡ ûa,1 e2 iωt ,

⎫⎬⎭ (5.12)

where the constants a±
r and a

±
l satisfy the homogeneous version of (4.6) and (4.7), i.e.

with the forcing term Ĵ = 0. The eigenfunction is normalized such that

a−
l = e2 iR

1/2
− σωL, a+

l =
1

2

(
1 +

√
R+

R−

)
e−2 iR

1/2
− σωL +

1

2

(
1 −

√
R+

R−

)
e2 iR

1/2
− σωL,

a−
r = e−2 iR

1/2
− σωL, a+

r =
1

2

(
1 −

√
R+

R−

)
e−2 iR

1/2
− σωL +

1

2

(
1 +

√
R+

R−

)
e2 iR

1/2
− σωL .

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(5.13)
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Inserting (5.11) into (2.20), at O(ε2) we have

R
∂2pa,2

∂t2
− ∂2pa,2

∂ξ̃ 2
= −4 iωRB ′(τ )pa,1, R

∂ua,2

∂t
= −∂pa,2

∂ξ̃
− RB ′(τ )ua,1, (5.14)

whose solutions are found to be

pa,2 = e2 iωt
[(

b±
r e−2 i R

1/2
± ωξ̃ +b

±
l e2 i R

1/2
± ωξ̃

)
− R

1/2
± B ′ξ̃

(
a±

r e−2 iR
1/2
± ωξ̃ −a

±
l e2 iR

1/2
± ωξ̃

)]
, (5.15)

ua,2 = e2 iωt
[
R

−1/2
±
(
b±

r e−2 i R
1/2
± ωξ̃ −b

±
l e2 i R

1/2
± ωξ̃

)
− B ′ξ̃

(
a±

r e−2 iR
1/2
± ωξ̃ +a

±
l e2 iR

1/2
± ωξ̃

)]
. (5.16)

Applying the boundary condition at the two ends and the jump condition across the
flame,

[pa,2] = 0, [ua,2] = Ĵ e2 iωt at ξ̃ = 0, (5.17)

we obtain an algebraic system (cf. WMMP),

M b = d, (5.18)

where M is given by (4.36) of WWMP; b = (b−
r , b−

l , b+
r , b+

l )T; and

d = (0, −R1/2
− Ĵ, −2R1/2

− a−
l e−2 i R

1/2
− σωl σLB ′, −2R

1/2
+ a+

l e2 iR
1/2
+ (1−σ )ωL(1 − σ )LB ′)T.

(5.19)
The matrix M is singular owing to (2.27). A solvability condition is therefore required,
and this leads to the amplitude equation for the acoustic mode

B ′(τ ) = χa(π/ω)

∫ ω/π

0

α2(t; τ ) e−2 iωt dt + mpB, (5.20)

where

χa = qk2Λ/(L sin(2R1/2
− σωL)), mp =

βM(γ − 1)qΛ

2ε2L
cot(2R1/2

− σωL), (5.21)

with Λ being the same as (4.41) of WWMP, provided that ω is replaced by 2ω. Now
from (5.11)–(5.13), one finds that

ua,t (0
−, t) = 4ωR1/2

− sin(2R1/2
− σωL)B(τ ) e2 iωt + c.c., (5.22)

�pa,ξ (t) = −4ω

(
R+

R−
− 1

)
R1/2

− sin
(
2R1/2

− σωL
)
B(τ ) e2 iωt + c.c. ≡ −χcB(τ ) e2 iωt + c.c.

(5.23)
Inserting (5.23) into (5.8) yields a forced Mathieu equation

(R+ + R−)α′′(t) + 2k α′(t) − {qk2 + k(R+ − R−)G + kχc(B(τ ) e2 iωt + c.c.)}α
= N0 e− iωt + c.c. (5.24)

governing the flame front and in turn the hydrodynamic field. Here a prime denotes
differentiation with respect to t , but the function α(t; τ ) also depends on the slow
time variable τ due to the presence of the term proportional to B(τ ), which represents
the acoustic feedback effect. A generalization of (5.24) by including O(δ) corrections
is given by (A 15) in the appendix.

The integro-differential system (5.20) and (5.24) (or its extension (A 15)) describes
the mutual interaction between the flame and the spontaneously induced acoustic
field. It couples the fast dynamics of flame wrinkling and the slow dynamics of the
sound intensity, which evolve over a long time scale under the accumulated effect of



342 X. Wu and C. K. Law

the wrinkling flame. The appropriate initial condition for α and B can be prescribed
as

α → N0

�0

e− i ωt + c.c., B → χa

(
N∗2

0 /�∗2
0

)
τ as τ → 0, (5.25)

in order to match asymptotically with the previous stage, where the acoustic back
action on the flame is negligible. Here

�0(k, ω) = (R+ + R−)ω2 + 2 i k ω + [qk2 + k(R+ − R−)G]. (5.26)

Note that the acoustic intensity B is zero at τ = 0, implying that the system starts
from an essentially silent initial state. Any acoustic fluctuation that arises during
the course of the evolution is entirely generated by the flame. According to (2.35)
and the second equation in (2.34), the acoustic velocity fluctuation would cause the
flame position to vibrate with a frequency twice that of flame wrinkling, as observed
in experiments (Markstein 1953). This is however a dynamically passive effect for a
freely propagating flame under consideration.

5.2. Regime II: initiation of parametric instability of flame and its coupling with the
self-induced sound

Since (5.24) involves no derivative with respect to the slow variable τ , the acoustic
intensity B plays the role of a ‘parameter’, as far as the flame response is concerned.
This implies that the flame responds to the instantaneous acoustic pressure in a
quasi-steady fashion. It is known that for a given ω there is a threshold pressure
amplitude Bc = Bc(ω) such that a subharmonic parametric resonance can occur
in the homogeneous system (Markstein 1955; Searby & Rochwerger 1991); that is
the homogeneous system admits a non-trivial solution even in the absence of any
forcing. It is therefore expected that as B(τ ) → Bc, the forcing starts to resonate
with the parametric instability mode so that the flame response α(τ ) would develop
a singularity at a finite time τc. The system (5.20) and (5.24) cannot be integrated
beyond τc.

In the vicinity of τc, a new regime emerges because a well-defined subharmonic
parametric instability mode is excited. The whole system evolves over a time scale
much shorter than O(ε−2), and as a result the response of the flame to the acoustic
field is no longer quasi-steady. Rather it is affected by the rate of change of the
parametric instability mode so that the new phase of the evolution may be referred
to as the ‘non-equilibrium’ regime. A scaling argument, based on balancing the rate
of change of the parametric instability mode and the back action of the acoustic
field, suggests that the new regime commences when (τ − τc) ∼ O(ε3/2), and so we
introduce

τ = τc + ε3/2τ̂ . (5.27)

The solution for the acoustic field expands as

pa = B(τ )pa,1 + εpa,2 + · · · , ua = B(τ )ua,1 + εua,2 + · · · , (5.28)

where the intensity of the sound deviates from the threshold value Bc by O(ε1/2)
amount so that B is expressed as

B = Bc + ε1/2B̂(τ̂ ), with B̂ = O(1). (5.29)

The amplitude of the flame, F , rises to O(ε1/2), and the solution for α(t) can be
written as

α(t; τ̂ ) = ε−1/2(A(τ̂ )α0(t) + c.c.) + α1 + · · · . (5.30)



Flame-acoustic resonance initiated by vortical disturbances 343

At leading order, α0 is a marginal parametric instability mode, with a global amplitude
A(τ̂ ). It is governed by the equation,

L α0 = 0, (5.31)

where

L =
d2

d t2
+

{
2k

R+ + R−

}
d

d t
−
{

qk2 + k(R+ − R−)G + kχc(Bc e2 iωt + c.c.)

R+ + R−

}
. (5.32)

For the subharmonic resonance, the solution for α0 can be written as

α0 = e− i ωt

∞∑
n=−∞

α̂n e−2 i nωt .

The amplitude is determined by considering α1, which satisfies

Lα1 = −A′
(

2α′
0 +

2k

R+ + R−
α0

)
+

kχc

R+ + R−
(B̂ e2 iωt + c.c.)α0 +

N0

R+ + R−
e− iωt .

(5.33)

Since the homogeneous system admits an eigensolution, an appropriate solution for
α1 exists only if the right-hand side of (5.33) satisfies a solvability condition, which
as usual can be imposed by introducing the adjoint operator of (5.32):

d2 α†

d t2
−
{

2k

R+ + R−

}
d α†

d t
−
{

qk2 + k(R+ − R−)G + kχc(Bc e2 iωt + c.c.)

R+ + R−

}
α† = 0.

(5.34)

Now multiplying the adjoint function α† with both sides of (5.33) and integrating by
parts, we obtain

A′(τ̂ ) = γa (B̂ + B̂∗)A + N̂0, (5.35)

where

γa = − kχc

R+ + R−

∫ 2π/ω

0

e2 i ωt α0α
†dt

∫ 2π/ω

0

{
2α′

0 +
2k

R+ + R−
α0

}
α†dt,

N̂0 =
N0

R+ + R−

∫ 2π/ω

0

e− i ωt α†dt

∫ 2π/ω

0

{
2α′

0 +
2k

R+ + R−
α0

}
α†dt.

The flame drives the acoustic field via the jump J. Inserting (5.30) into (2.22) yields

J = 2εqk2(A + A∗)2
∞∑

p=−∞
α̂−pα̂p e2 iωt + c.c. + · · · , (5.36)

where only the Fourier component in resonance with the duct mode is written out
explicitly. Substituting expansion (5.28) along with (5.29) into the acoustic equations,

we obtain, from the solvability condition at O(ε), the amplitude equation for B̂ ,

B̂ ′(τ̂ ) = γb (A + A∗)2, (5.37)

where

γb = χa

∞∑
p=−∞

α̂−pα̂p.
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Equations (5.35) and (5.37) describe the interaction of a parametrically marginally
unstable flame with its acoustic field. On anticipating that A forms an algebraic
singularity towards the end of the previous regime, it can be shown that the structure

consistent with (5.35) and (5.37) must be A ∼ τ̂−1/3 and B̂ ∼ τ̂ 1/3. The asymptotic
matching requirement means that the appropriate initial condition can be prescribed
as

A → a0τ̂
−1/3, B̂ → b0τ̂

1/3 as τ̂ → −∞, (5.38)

where the complex constants a0 and b0 are determined by

γa(b0 + b∗
0)a0 + N̂0 = 0,

1

3
b0 = γb(a0 + a∗

0)
2. (5.39)

It is worth noting that (5.35) and (5.37) are somewhat different from the generic
amplitude equations, A′ = A∗B and B ′ = A2, for subharmonic resonant waves (e.g.
Craik 1985). This is due to the fact that the acoustic mode and the parametric
instability mode of the flame are comprised of both left and right travelling waves.

6. Resonant interaction between flame and spontaneously generated acoustic
modes: a moving flame

If the mean position of the flame is propagating, the ‘parameter’ denoting the flame
position, σ , is a (slow) function of time. For definitiveness, assume that the flame is
at the inlet when t = 0 say. Then σ and t are related by σ = 1 − M(1 − U−)t/L. For a
given ω, the resonance condition �s(2ω, σc) = 0 could be satisfied only at a particular
time tc. Resonance is expected to take place within a time window centred at tc. As the
flame propagates, the resonance condition deteriorates. The resonance must therefore
be of transient nature. Since the duct is assumed to be very long, O(M−1h∗), the
characteristic frequency of the acoustic modes may not be altered significantly for a
considerable period of time. A scaling argument shows that for (t − tc) � O(M−1/2),
the duct responds in a quasi-steady manner, with the moving mean flame position
playing the role of a parameter. The response exhibits the character of resonance for
(t −tc) ∼ O(M−1/2), but the relatively small and slow change of the flame position with
time must be accounted for. The appropriate time variable describing the transient
resonant phase is introduced by writing

t = tc + M−1/2τ. (6.1)

Through the transient resonance, the intensity of the sound is amplified by a factor
O(M−1/2), reaching O(ε2M−1/2). In order to allow for a possible impact of the induced
sound on the flame, the Mach number M is scaled such that

M = mε4 with m = O(1).

Without losing generality, we take m = 1.
The solution for the acoustic field may still be written as (5.11). The two ends of

the duct correspond to ξ̃ = −σcL+M1/2(1 − U−)τ and ξ̃ = (1 − σc)L+M1/2(1 − U−)τ
respectively. Thus the boundary conditions for pa,2 are modified to

ua,2 = −∂ua,1

∂ξ̃
(1 − U−)τ at ξ̃ = −σcL,

pa,2 = −∂pa,1

∂ξ̃
(1 − U−)τ at ξ̃ = (1 − σc)L.

⎫⎪⎪⎬⎪⎪⎭ (6.2)
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Imposition of the boundary and jump conditions leads to (5.18), with d now being
replaced by

d =

⎡⎢⎢⎣
0

−R
1/2
− Ĵ

−2R
1/2
− a−

l e−2 i R
1/2
− σcωl{σcLB ′ − i ω(1 − U−)τB}

−2R
1/2
+ a+

l e2 i R
1/2
+ (1−σc)ωL {(1 − σc)LB ′ + iω(1 − U−)τB}

⎤⎥⎥⎦ . (6.3)

The solvability condition yields the evolution equation for B ,

B ′(τ ) = i χsτB + χa(π/ω)

∫ ω/π

0

α2(t; τ ) e−2 iωt dt + mpB, (6.4)

where

χs = −2ω

L

(
R+

R−
− 1

)
(1 − U−) tan(2R1/2

− σcωL)Λ. (6.5)

The extra term i χsτB in (6.4) represents the detuning effect caused by the movement
of the mean flame position (cf. (5.20)).

The flame front continues being governed by (5.24) and is rewritten here:

(R+ + R−)α′′(t) + 2k α′(t) − {qk2 + k(R+ − R−)G + kχc(B(τ ) e2 iωt + c.c.)}α
= N0 e− iωt + c.c. (6.6)

However, the appropriate initial condition becomes

α → N0

�0

e− i ωt + c.c., B → i N∗2
0

χs�
∗2
0

τ−1 as τ → −∞, (6.7)

in order to match with the solution in the pre-resonance stage.
Depending on the intensity of the oncoming vortical disturbance, the induced

acoustic pressure may still reach the threshold Bc for the subharmonic resonance at a
time τc. The evolution in its vicinity would still be described by (5.35)–(5.37), because
over this short time scale, the position of the flame appears fixed to leading-order
approximation.

We conclude the analysis part of this paper by reiterating that the simplified
equations derived in § § 5 and 6 apply only to intrinsically stable flames. In most
practical and laboratory conditions, flames are often subjected to hydrodynamical
and/or thermal-diffusive instabilities. Experiments (e.g. Searby 1992) indicate that
the initial hydrodynamic instability may lead to a violent parametric instability.
Developing a simplified mathematical theory capable of predicting this phenomenon
is left for further research.

7. Numerical solutions
The results/equations derived in previous sections have been evaluated/solved

numerically. Unless stated otherwise, the parameters used are as follows:

h∗ = 10 cm, l∗ = 120 cm, q = 5, UL = 10 m s−1,

D∗
th = 0.22 cm2 s−1 , a∗ = 340 m s−1, Le = 1.11 , β = 12, γ = 1.4.

These parameters are close to the experimental condition of Searby (1992) but with a
slower flame speed. They give rise to δ = 2.2 × 10−3, Mach number M = 2.94 × 10−4

and Markstein number Ma = 4 (cf. Searby & Clavin 1986).
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Figure 1. The growth rate of D-L instability ωi versus the total transverse wavenumber k for
(a) UL = 10 cm s−1 and (b) UL = 12 cm s−1. Solid line: second-order theory; dashed-line:
first-order theory.

Figure 1 shows growth rates of the D-L instability, predicted by the leading- and
second-order theories, i.e. by

�0(k, ω) = 0 and �(k, ω) = 0

respectively (see (3.10) and (5.26)). The leading-order approximation is valid for
relatively small k, but yields an incorrect result of instability at large values of k for
all UL �= 0. The second-order diffusive effect from the preheat zone plays a stabilizing
role, especially at large k. This effect provides an intrinsic length scale, as reflected
by the fact that there now exists the most unstable (or least stable) wavenumber.
The instability is possible only for a finite band of wavenumers (see e.g. the case
for UL = 12 cm s−1), and there exists a cutoff wavenumber beyond which all modes
are stable. In the small-k limit, the stability is significantly influenced by the gravity,
and ω has a non-zero real part ωr (i.e. the modes are oscillatory but damped). The
growth rate decreases with k, since the stabilizing effect of the gravity is proportional
to k. It then increases and becomes positive eventually when the destabilizing effect
of gas expansion takes over. The cusp (or ‘corner’) signals a switch from a complex
ω to a purely imaginary ω. When the flame speed UL = 10 cm s−1, all D-L modes
are damped; i.e. the flame is hydrodynamically stable. Thermal-diffusive instability is
also absent because of the small deviation of the Lewis number from unity.

The response of the flame to perturbations of two representative transverse
wavenumbers is shown in figure 2. Since any non-zero scaled longitudinal velocity of
the oncoming perturbation C− �= 0 can be absorbed into the definition of ε, we take
C− = 1 in all the calculations for a fixed flame. For k = 3π, the response function
exhibits a peak at a particular ω, reminiscent of that of a damped oscillator to
harmonic forcing. This is expected, since the flame supports oscillatory modes with
the relatively small k. For k = 8π, gravity plays a negligible role (see figure 1), and
the flame response decreases monotonically with ω. The wrinkled flame drives sound
waves in the duct due to the unsteady heat release associated with the surface-area
change. The variation of the intensity of the induced acoustic pressure with the
perturbation frequency is displayed in figure 3. As is expected, one observes a highly
tuned response, with an infinite peak occurring at a discrete frequency ω such that
2ω coincides with a natural frequency of an acoustic duct mode; i.e. the resonant
condition (4.10) is satisfied. Here only the resonance of the flame with the fundamental
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Figure 2. The flame response to vortical perturbations as measured by |F̄ | versus the frequency
ω of the perturbation with different transverse wavenumbers k = 3π and k = 8π. Solid line:
second-order result; dashed line: first-order result.
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Figure 3. The acoustic pressure |pa | generated by a wrinkled flame versus the frequency ω of
the perturbation. Three flame positions considered correspond to σ = 0.25, 0.5 and 0.75. Solid
lines: k = 8π; dashed lines: k = 3π.

duct mode is shown, since resonance with higher modes is likely to be less effective
due to their high frequencies.

The resonant case is of particular interest, since the accumulated intensification of
the acoustic pressure arising from the resonance between the duct mode and the flame
leads to a fully coupled stage, the first regime of which is governed by the evolution
system (5.20) and (5.24) or (A 15). Equation (5.20) is integrated forward numerically
by using a fifth-order Adam–Bashforth multiple-step scheme. The solution for α may
be written as

α(t; τ ) = e− i ωt

∞∑
n=−∞

αn(τ ) e−2 i nωt ,

where the reality of α requires α−(n+1) = α∗
n. Substituting it into (5.24) shows that αn

for n � 0 satisfies

�0(nω)αn + kχc(B
∗(τ )αn−1 + B(τ )αn+1) = −N0δn0. (7.1)

A truncated system would consist of simultaneous linear equations with a tridiagonal
matrix, which can be solved at each time step by using LU factorization for a given
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Figure 4. Evolution of flame wrinkling and the sound intensity in regime I of the two-way
interaction for k = 8π: (a) |αs(τ )| versus τ and (b) |B(τ )| versus τ . Solid lines: second-order
theory; dashed lines: first-order theory; dashed–dotted lines: secondary-order theory including
the direct pressure effect (mp = 5.0).

B(τ ). The extended equation (A 15) is solved in a similar fashion, since it is of the
same form as (5.24).

Figure 4 shows the evolution of flame wrinkling, measured by

αs(τ ) ≡
[ ∞∑

n=−∞
|αn(τ )|2

]1/2

,

and the corresponding acoustic intensity B . Both the leading- and second-order results
indicate that the back action of the sound on the flame via the R-T effect causes
further wrinkling, which in turn produces more intense sound; the mutual interaction
thus forms a positive feedback loop. The acoustic pressure intensity soon approaches
the threshold amplitude for the subharmonic parametric instability within a finite
time τc, at which point αs develops a singularity. While B remains regular, its gradient
B ′ becomes singular. This massively destabilizing effect of the acoustic feedback on
the overall system appears generic and is observed at other parameter values, for
example k = 3π (in which case the singularity occurs at a later time, at about τc ≈ 4).
Note that it takes place however weak the vortical perturbation is. When the pressure
effect on the burning rate is included, the sound intensity and flame wrinkling amplify
faster than otherwise. Despite this appreciable difference, the qualitative behaviour
remains the same. Crucially, the formation of the singularity is due to the modulation
of the flame surface area. It is also worth noting that the amplifying effect represented
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Figure 5. Evolution of the amplitude of the parametric instability mode and the sound
intensity in regime II of the two-way interaction for k = 8π: (a) |A(τ̂ )| versus τ̂ and (b) real

and imaginary parts of B̂(τ̂ ), B̂r and B̂i versus τ̂ . Solid lines: non-equilibrium response; dashed
lines: asymptote (5.38) in regime I.

by mpB may partially be cancelled by the acoustic damping that is ignored. It was
found in WWMP that neglecting mpB (along with the damping) gave a result in
better agreement with experiments.

In the vicinity of τc, the subharmonic parametric instability mode of the flame is
coupled with the acoustic mode. Their evolution is described by (5.35) and (5.37).
The ‘non-equilibrium’ nature is reflected by the fact that the acoustic field controls
the rate of change of the flame, rather than the flame amplitude itself (cf. (5.35) and
(5.24)). Equations (5.35) and (5.37) are solved by using a 4th-order Rounge-Kutta
method. Figure 5 shows the evolution of A, the amplitude of the parametric instability

mode, and B̂ , the acoustic intensity, over the shorter time variable τ̂ . For k = 8π,
the non-equilibrium effect further destabilizes the system, causing even more rapid

amplification of flame wrinkling and sound wave. Both A and B̂ develop a new
singularity at τ̂c < 0, before the singularity in regime I is reached. It is easy to show
that the singularity of the solution to (5.35) and (5.37) must be of the form

A ∼ â0(τ̂c − τ̂ )−1, B ∼ b̂0(τ̂c − τ̂ )−1 as τ̂ → τ̂c, (7.2)

where â0 and b̂0 satisfy

1 = γa(b̂0 + b̂∗
0), −b̂0 = γb(â0 + â∗

0)
2. (7.3)

It is worth pointing out that not only does this singularity occur at a shorter time
scale, but also it is of a much severer type than the one in the previous regime.
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Figure 6. Evolution of the amplitude of the parametric instability mode and the sound
intensity in regime II of the two-way interaction for k = 3π: (a) |A(τ̂ )| versus τ̂ and (b) real

and imaginary parts of B̂(τ̂ ), B̂r and B̂i versus τ̂ . Solid lines: non-equilibrium response; dashed
lines: asymptote (5.38) in regime I.

Interestingly, for k = 3π shown in figure 6 the non-equilibrium effect initially plays
a stabilizing role, in the sense that it first renders the amplification to be slower
than in regime I, and moreover it is able to remove the singularity (5.38). However,
this stabilizing effect is short lived. Eventually, the amplification becomes faster, and
the solution, while bypassing the singularity (5.38), develops the same singularity
as (7.2) at τ̂c > 0. Note that the final singularity, (7.2) and (7.3), is unaffected by
the external forcing term N. This implies that on approaching the singularity the
internal dynamics dominate, while the external perturbation, having led the system
to the present stage by initiating first the acoustic-flame resonance and then the
subharmonic parametric instability, has become largely irrelevant.

It is noted that in regime II, the self-nonlinear effect of the (parametric instability)
mode, which typically contributes a Landau type of cubic nonlinear term A|A|2
to the amplitude equation (Stuart 1960), does not affect the evolution because of
the relatively small characteristic magnitude. There comes the question: would the
increased amplitude through the singularity (7.2) lead to yet another regime in which
the self-singularity is important? The question can be settled by a scaling argument
as follows: As τ̂ → τ̂c, the cubic nonlinear term is O(ε3/2(τ̂c − τ̂ )−3), while the rate
of change of the flame amplitude ε1/2 dα/ d t ∼ O(ε(τ̂c − τ̂ )−2). The two become
comparable when

(τ̂c − τ̂ ) ∼ O(ε1/2).



Flame-acoustic resonance initiated by vortical disturbances 351

|αs|

0 0.02 0.04 0.06–0.02
0.002

0.004

0.006

0.008

0.010

0.012

0.014

(3) (2)

(1)

(a)

0 0.02 0.04 0.06–0.02
τ

|B|

0

0.05

0.10

0.15

0.20

0.25

(3) (2)

(1)

(b)

Figure 7. Evolution of flame wrinkling and the sound intensity during the transient resonance
phase: (a) |αs(τ )| versus τ and (b) |B(τ )| versus τ . Curves (1), (2) and (3) represent the results
for the oncoming velocities C− = 2, 4 and 5 respectively.

Within the vicinity of τ̂c specified above, flame wrinkling α and the deviation of
the acoustic intensity from Bc become O(1), while the time scale of the evolution
becomes comparable with the period of the acoustic and flame oscillation so that
the notion of a wave envelope is no longer attainable. Both consequences indicate
that the singularity (7.2) leads the system directly into a strongly nonlinear regime
without going through any further intermediate weakly nonlinear phase. It may be
speculated that in this final regime a state of self-sustained acoustic-flame oscillation
is established.

Finally, we turn to the case of a moving flame and solve the evolution system (6.4)–
(6.6), which describes the flame-acoustic interaction during the transient resonance
phase. The result for U− = 0.9 is shown in figure 7. Unlike the case of a fixed
flame, the dynamics now depend on the amplitude of the oncoming perturbation,
characterized by C−. For a relatively small C− = 2 (curves (1)), the amplification of
flame wrinkling by the transient resonance is rather minimal. There is an appreciable
gain in the induced sound, due to the accumulated action of flame wrinkling, and for
the same reason, the sound wave amplitude B continues to amplify as τ increases, but
the slow amplification suggests that B is unlikely to reach the threshold amplitude
for subharmonic parametric resonance. An interesting feature is that both |αs | and
B exhibit a rather regular oscillatory behaviour in the post resonance phase. This is
a beating phenomenon caused by the difference between the constant frequency of
the vortical perturbation and the frequency of the duct mode which varies slowly
with time for a moving flame. For the relatively strong perturbation C− = 5 (curve 3)
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say, the induced pressure reaches Bc during the transient resonance phase so that
subharmonic resonance is initiated, and the solution soon develops singularity (5.38)
within a finite time. For a moderate C− = 4, flame wrinkling and sound intensity
undergo strong oscillations before terminating at the singularity. In any case, it may
be expected that the transient resonance would lead to one or more ‘episodes’, during
which the acoustic pressure rises to an appreciate level, while the flame position
vibrates with a frequency twice that of flame wrinkling. These are in qualitative
agreement with the observations summarized by Markstein (1953). The multiple
episodes detected in experiments (figure 15 of Markstein 1953) are probably related
to the modulated oscillatory response predicted here (figure 7b).

8. Discussions and conclusions
In this paper, we investigated the influence of vortical disturbances, which represent

weak turbulence superimposed on the oncoming fresh mixture, on a stable planar
premixed flame in a duct, with particular attention to their role in initiating and
interfering the flame-acoustic coupling. Under the assumption that the vortical
disturbance is of small amplitude and consists of a single Fourier component with
a frequency (ω), systematic linear and weakly nonlinear approximations were made
to derive from the general acoustic-flame interaction theory of WWMP a series of
simplified equations, which describe the evolution of the flame-acoustic system and
the dominant physics involved.

When a flame is wrinkled by the perturbation, the time-periodic heat release due to
the surface-area change drives acoustic oscillations in the duct. The main focus of the
present study was on the resonant case, in which 2ω coincides with the characteristic
frequency of the fundamental acoustic mode of the duct so that the latter amplifies
linearly with time t . The spontaneously generated acoustic field then acquires an O(1)
magnitude to act back on the flame via the unsteady R-T effect. Two distinct regimes
of this two-way coupling were identified. In the first regime, the flame responds to the
acoustic pressure in a quasi-steady fashion. The evolution was governed by a novel
integro-differential system. Numerical solutions indicate that the mutual interaction
massively enhances flame wrinkling and acoustic oscillation. In the case of a fixed
flame, the acoustic intensity approaches the threshold amplitude for the subharmonic
parametric instability, at which point flame wrinkling develops a singularity. In
the second regime, the parametric instability was initiated and was coupled with
the acoustic mode. The new coupled equations develop yet another singularity,
which eventually takes the system to a final fully nonlinear stage. The above results
provide a detailed first-principle description of the two-way dynamical interaction
between a wrinkling flame and the spontaneously generated sound (Markstein 1953;
Markstein & Squire 1955), which is believed to be of fundamental importance to
combustion instability.

An upshot of the present analysis is that a suitable small-amplitude vortical
perturbation may completely destabilize a flame that is hydrodynamically and
thermal-diffusively stable. This remarkable destabilization mechanism involves three
simultaneously operating elementary processes: flame wrinkling in a flow field,
excitation of acoustic mode by unsteady heat release and the parametric instability
induced by the acoustic pressure. Each of these has been studied separately and
reasonably well understood. While those studies are invaluable, it is the dynamic
interplay among all the three processes that is most instrumental to sustaining
combustion instability. Illustrating this point is the parametric instability. In a ‘static’



Flame-acoustic resonance initiated by vortical disturbances 353

setting of an externally prescribed acoustic wave, the required acoustic threshold
for instability turns out to be quite high (usually two to three times of the laminar
flame speed; see Searby & Rochwerger 1991). However, when the dynamical process
of spontaneous sound generation is taken into account, it is found here that there
is no need to introduce an acoustic wave of that magnitude to make the flame
parametrically unstable. Indeed, the parametric instability is triggered without being
forced by any external acoustic wave at all.

The present result indicates that under the action of small inevitable disturbances
such as vortical perturbations, a stable planar flame without any acoustic field may
evolve into a fully nonlinear regime, where a strong acoustic field is spontaneously
produced by the flame. This scenario is probably generic. Mathematically and
physically, it may well be possible that two (or more) solutions coexist at the same
parameters: a low-branch solution for which the acoustic field is absent or sufficiently
weak to remain dynamically passive and an upper-branch solution sustained by an
active closed-loop interaction between the flame and its acoustics. Experiments (e.g.
Searby 1992) and recent numerical simulations based on the Navier–Stokes equations
for compressible reactive flows (Petchenko et al. 2006) all point to the existence of a
highly curved flame with a self-sustained acoustic field (i.e. an upper-branch solution)
in addition to the planar flame (i.e. a lower-branch solution). Indeed, acoustically
unstable combustion may correspond precisely to such an upper-branch solution. The
present finding for a planar flame suggests that relatively weak ambient perturbations
might provoke a switch to a possible upper-branch solution.

The authors would like to acknowledge the support by UK EPSRC (EP/
F00950X/1) (for X. Wu) and the USA Air Force Office of Scientific Research (for
C. K. Law). The referees are thanked for their helpful comments and suggestions,
which have helped improve the present paper.

Appendix A. Parametric instability equation with O(δ) accuracy
The leading-order formulation of the parametric instability can be extended to

second order with O(δ) accuracy by including the O(δ) jumps as well as viscous
diffusion terms in the linearized hydrodynamic equations (2.37). The solution for
(Ũ , Ṽ , P̃ ) may still be written as (5.2) with (5.3)–(5.5), but the functions C+ and D+

are now replaced by C+(ξ, t) and D+(ξ, t), which satisfy

C+
ξ + i k† · D+ = 0, (A 1){

R+

∂

∂t
+

∂

∂ξ
− δP r

(
∂2

∂ξ 2
− k2

)}(
C+

D+

)
= 0. (A 2)

Equation (A 2) can easily be solved by taking Laplace transform with respect to

ξ > 0. For C+, its Laplace transform Ĉ+(s, t) satisfies

R+

∂Ĉ+

∂t
+ [s − δP r(s2 − k2)]Ĉ+ = (1 − δP rs)C+(0+, t) − δP rC+

ξ (0+, t),

where C+(0+, t) and C+
ξ (0+, t) stand for the values of C+ and C+

ξ on the burned side
of the flame and will be expressed in terms of φ± by using the jump conditions across
the flame (see below). The solution is found to be

Ĉ+(s, t) =
R−1

+

Λ(t)

∫ t

−∞
{(1 − δP rs)C+(0+, t̃) − δP rC+

ξ (0+, t̃)}Λ(̃t)d t̃ , (A 3)
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where we have put

Λ(t) = exp{R−1
+ [s − δP r(s2 − k2)]t}.

To aid the later calculation, we rewrite (A 3) by integration by parts as

Ĉ+(s, t) = −s−1R−1
+

Λ(t)

∫ t

−∞

{
R+C+

t̃
(0+, t̃) + δP rk2C+(0+, t̃) + δP rsC+

ξ (0+, t̃)
}

Λ(̃t)dt̃

+ s−1C+(0+, t). (A 4)

Similarly,

D̂
+
(s, t) =

R−1
+

Λ(t)

∫ t

−∞
{[1 − δP rs]D+(0+, t̃) − δP r D+

ξ (0+, t̃)}Λ(̃t)dt̃ . (A 5)

The continuity equation is Laplace transformed to yield

sĈ+(s, t) − C+(0+, t) + i k† · D̂
+

= 0. (A 6)

Inserting (A 4) and (A 5) into (A 6) and making use of (A 1), we arrive at the relation

−R+C+
t (0+, t) − δP rk2C+(0+, t) + i k† · D+(0+, t) − δP r i k† · D+

ξ (0+, t) = 0. (A 7)

The jump conditions, (2.41) and (2.43), imply that

C+(0+, t) = −(φ+ − φ−) + δ

(
1

2
lqD

)
(k2α + kφ− − i k† · D− e− iωt ) + C− e− iωt , (A 8)

D+(0+, t) =
i k†

k
(φ+ + φ−) − q (i k†)α + D− e− iωt +δ

{
Pr

[[
∂ V
∂ξ

]]
+

[
i k†
(

1

k
φ′

−(t) + α′ + (G + ua,t (0
−, t))α

)
− iωD− e− iωt

]
ln(1 + q)

}
,

(A 9)

where a direct calculation shows that

D+
ξ (0+, t) = i S− D− e− i ωt − i k†(φ+ − φ−) +

[[
∂ V
∂ξ

]]
. (A 10)

The above relations are inserted into (A 7) to give

R+(φ′
+ − φ′

−) − k(φ+ + φ−) + qk2α − δ(G + ua,t (0
−, t)) ln(1 + q)k2α

= δ

{[
ln(1 + q) +

q lD
2(1 + q)

]
(k2α′ + kφ′

− − ω(k† · D−) e− iωt )

}
+ {− i(R+ωC− + k† · D−) + δ[Pr(k2C− − S− k† · D−)]} e− iωt . (A 11)

The pressure jump, including the O(δ) terms, can be written as

R+φ′
+ + R−φ′

− − k(φ+ − φ−) − k{(R+ − R−)G − �pa,ξ }α
= δk

{
−qlD(k2α + kφ− − i k† · D− e− i ωt ) − qk2α + (φ′

− − iωC− e− iωt ) ln(1 + q)
}

.

(A 12)

Subtracting (A 11) from (A 12) leads to

(R+ + R−)φ′
− + 2kφ− − {qk2 + k[(R+ − R−)G − �pa,ξ ] − δk2(G + ua,t (0

−, t)) ln(1 + q)}α

= −δ

{
qlD(k3α + k2φ−) + qk3α +

[
ln(1 + q) +

qlD
2(1 + q)

]
k2α′ +

qlD
2(1 + q)

kφ′
−

}
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+

{
i(R+ωC− + k† · D−) + δ

[[
ln(1 + q) +

q lD
2(1 + q)

]
ω(k† · D−)

+ (qlD) i k k† · D− − i ωkC− ln(1 + q) − Pr(k2C− − S− k† · D−)

]}
e− iωt .

(A 13)

Combining this equation with the front equation

α′ = φ− + C− e− i ωt −δ

[
1 + q

q
ln(1 + q) +

1

2
lD
]

(k2α + kφ− − i k† · D− e− iωt ) (A 14)

to eliminate φ− and using (5.22) and (5.23) for ua,t (0
−, t) and �pa,ξ , we finally obtain

Aα′′ + Bα′ + [C − k(χ̃cB(τ ) e2 i ωt + c.c.)]α = N e− iωt + c.c., (A 15)

where the constants A, B and C are given by (3.11) and

χ̃c = χc(1 + (i ωlD)δ)

(
1 + δ

1 + q

q
ln(1 + q)k

)
,

(A 16)
N = 2(k − i ωR−)(1 − i δQF )C−.

Again there is no dependence of the Prandtl number, Pr . Equation (A 15) extends the
parametric instability equation (5.24) to O(δ) accuracy and interestingly is of the same
form as the leading-order one. Although it has been used by Searby & Rochwerger
(1991) and Bychkov (1999), among others, to analyse parametric instability caused by
an externally imposed (as apposed to a self-generated) pressure, it does not appear
to have been derived before.

Finally, one should bear in mind that an O(ε) error is present due to neglecting the
nonlinear terms in the hydrodynamic equations and jumps. As was remarked in § 2,
this nonlinear correction can be accounted for by means of a regular perturbation
procedure, leading to a further improved theory with O(ε) accuracy, which may be
used to check the accuracy of the results obtained in the present paper.
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